- 참치군
- ?
- stalk.io
- :: 2013년, 스리는 여섯살
- 웹 강좌
- 점프 투 파이썬
- 요니나의 대학생 재테크
- This is CS50
- 애자일 이야기
- isao의 IT,게임번역소
- 소프트웨어 이야기
- Color Scripter
- 어디를 가든지 마음을 다해 가라
- VisuAlgo
- 서울대 평생교육원
- 몽환
- RegExr: Learn, Build, & Test R…
- Hello, Stranger :D
- I Like Exploit
- Z3alous Security Story
- Project Euler
- Blog
- pieces of code
- window 쪼물딱 거리기
- IT - Informatics Alphabet
- rop
- 국제 정보교육센터 I2sec 대구 1기
- This is the moment. :)
- blackmoon
- z3alous는 세상에 소리 z3alous~
- Acord
- FORENSIC-PROOF
- 어셈블리
- Outsider's Dev Story
- Open Tutorials
- 코드라이언
- 컴퓨터 그래픽스와 3D 프린팅
- HACKABILITY
- Lee, Jae-Hong
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | |||||
3 | 4 | 5 | 6 | 7 | 8 | 9 |
10 | 11 | 12 | 13 | 14 | 15 | 16 |
17 | 18 | 19 | 20 | 21 | 22 | 23 |
24 | 25 | 26 | 27 | 28 | 29 | 30 |
- 파이썬
- 호출규약
- Wireshark
- 버퍼오버플로우
- 염색
- 소켓
- 추상데이터타입
- 탈색
- 컴파일러
- ubuntu
- 오지총
- 펌
- 동대구
- 창의공학설계
- 디버깅
- 블루블랙
- 레지스터
- 베이스
- Visual Studio
- Debug
- BOF
- 피보나치
- Hello World
- 알고리즘
- Packet
- 공간복잡도
- Calling Convention
- 시간복잡도
- 발표
- C언어
- Today
- Total
목록알고리즘 (2)
c0smicb0y
동적 계획법 정의 : 어떤 문제가 반복적이고 최적 하위구조로 이루어질때, 하위구조에 있는 부분 문제의 답을 기반으로 전체 문제의 답을 구하는 방법 최적 하위구조(Optimal Substructure)란 전체 문제의 답이 부분 문제의 답으로부터 만들어지는 구조를 말한다. 예를 들어 어떤 문제를 7개의 하위문제로 나눌 수 있을때, 7개의 하위문제의 답을 모두 얻어야 이 문제의 답을 구할 수 있다면 이 문제는 최적 하위구조를 갖추었다고 할 수 있다. 분할정복과 비슷해 보이지만, 분할정복은 문제를 큰부분에서 작은부분으로 나누는데반해(Top-Down), 동적 계획법은 제일 작은 부분부터 큰 문제로 풀어 올라간다(Bottom-Up). 또한 분할정복은 나눈 문제들을 완전히 새로운 하나의 독립된 새로운 문제로 보지만,..
분할정복 정의 : 분할정복 알고리즘은 문제를 나눌 수 없을 때까지 나누어서 각각을 풀면서 다시 합병하여 문제의 답을 얻는 알고리즘이다. 알고리즘을 설계하는 요령 (1) Divide : 문제가 분할이 가능한 경우, 2개 이상의 문제로 나눈다. (2) Conquer : 나누어진 문제가 여전히 분할이 가능하면, 또 다시 Divide를 수행한다. 그렇지 않으면 문제를 푼다. (3) Combine : Conquer한 문제들을 통합하여 원래 문제의 답을 얻는다. 문제를 제대로 나누면 Conquer하는 것은 쉽기 때문에 Divide를 제대로 하는 것이 가장 중요하다.분할정복 알고리즘은 재귀 알고리즘이 많이 사용되는데, 이 부분에서 분할정복 알고리즘의 효율성을 깎아내릴 수 있다. 분할정복의 응용 1. 병합 정렬 (Me..